An efficient magnetically modified microbial cell biocomposite for carbazole biodegradation
نویسندگان
چکیده
Magnetic modification of microbial cells enables to prepare smart biocomposites in bioremediation. In this study, we constructed an efficient biocomposite by assembling Fe3O4 nanoparticles onto the surface of Sphingomonas sp. XLDN2-5 cells. The average particle size of Fe3O4 nanoparticles was about 20 nm with 45.5 emu g-1 saturation magnetization. The morphology of Sphingomonas sp. XLDN2-5 cells before and after Fe3O4 nanoparticle loading was verified by scanning electron microscopy and transmission electronic microscopy. Compared with free cells, the microbial cell/Fe3O4 biocomposite had the same biodegradation activity but exhibited remarkable reusability. The degradation activity of the microbial cell/Fe3O4 biocomposite increased gradually during recycling processes. Additionally, the microbial cell/Fe3O4 biocomposite could be easily separated and recycled by an external magnetic field due to the super-paramagnetic properties of Fe3O4 nanoparticle coating. These results indicated that magnetically modified microbial cells provide a promising technique for improving biocatalysts used in the biodegradation of hazardous compounds.
منابع مشابه
Degradation of carbazole by microbial cells immobilized in magnetic gellan gum gel beads.
Polycyclic aromatic heterocycles, such as carbazole, are environmental contaminants suspected of posing human health risks. In this study, we investigated the degradation of carbazole by immobilized Sphingomonas sp. strain XLDN2-5 cells. Four kinds of polymers were evaluated as immobilization supports for Sphingomonas sp. strain XLDN2-5. After comparison with agar, alginate, and kappa-carrageen...
متن کاملNew magnetically responsive yeast-based biosorbent for the efficient removal of water-soluble dyes
Fodder yeast (Kluyveromyces fragilis) cells were magnetically modified by a contact with the water-based magnetic fluid in order to prepare a new type of magnetically responsive biocomposite material. This procedure enabled a simple separation of modified cells by means of commercially available magnetic separators or strong permanent magnets. It allows using the prepared material as a new inex...
متن کاملBiodegradation of Carbazole By a Promising Gram-Negative Bacterium
In the present work we report a gram negative bacterial isolate, from soil of a dye industry, with promising biorefining and bioremediation potential. This isolate (GBS.5) could utilize carbazole (nitrogen containing polycyclic aromatic hydrocarbon) as the sole source of nitrogen and carbon and utilize almost 98% of 3mM carbazole in 100 hours. The specific activity of our GBS.5 isolate for carb...
متن کاملBiodegradation of crude oil by immobilized microbial cells in alginate beads produced by electrospraying technique
Background and Objective: Petroleum compounds are major contributors to aquatic environmental pollution. In recent years, biological treatments as environmental-friendly and cost-effective techniques have been used alongside the various physico-chemical methods. Microbial cell immobilization in hydrogel carriers has been the focus of researchers due to various advantages such as ease of microbi...
متن کاملCarbazole biodegradation in gas oil/water biphasic media by a new isolated bacterium Burkholderia sp. strain IMP5GC.
AIM To select carbazole-degrading bacteria able to survive and metabolize carbazole in biphasic organic-water media and to study the factors affecting carbazole degradation in such conditions. METHODS AND RESULTS In this research a new carbazole-degrading strain was isolated from hot springs in Mexico. This bacterium was preliminary identified as Burkholderia sp. IMP5GC and was able to grow u...
متن کامل